codice:
"""
Beating the Benchmark
Search Results Relevance @ Kaggle
__author__ : Abhishek
"""
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import StandardScaler
from sklearn import decomposition, pipeline, metrics, grid_search
# The following 3 functions have been taken from Ben Hamner's github repository
# https://github.com/benhamner/Metrics
def confusion_matrix(rater_a, rater_b, min_rating=None, max_rating=None):
"""
Returns the confusion matrix between rater's ratings
"""
assert(len(rater_a) == len(rater_b))
if min_rating is None:
min_rating = min(rater_a + rater_b)
if max_rating is None:
max_rating = max(rater_a + rater_b)
num_ratings = int(max_rating - min_rating + 1)
conf_mat = [[0 for i in range(num_ratings)]
for j in range(num_ratings)]
for a, b in zip(rater_a, rater_b):
conf_mat[a - min_rating][b - min_rating] += 1
return conf_mat
def histogram(ratings, min_rating=None, max_rating=None):
"""
Returns the counts of each type of rating that a rater made
"""
if min_rating is None:
min_rating = min(ratings)
if max_rating is None:
max_rating = max(ratings)
num_ratings = int(max_rating - min_rating + 1)
hist_ratings = [0 for x in range(num_ratings)]
for r in ratings:
hist_ratings[r - min_rating] += 1
return hist_ratings
def quadratic_weighted_kappa(y, y_pred):
"""
Calculates the quadratic weighted kappa
axquadratic_weighted_kappa calculates the quadratic weighted kappa
value, which is a measure of inter-rater agreement between two raters
that provide discrete numeric ratings. Potential values range from -1
(representing complete disagreement) to 1 (representing complete
agreement). A kappa value of 0 is expected if all agreement is due to
chance.
quadratic_weighted_kappa(rater_a, rater_b), where rater_a and rater_b
each correspond to a list of integer ratings. These lists must have the
same length.
The ratings should be integers, and it is assumed that they contain
the complete range of possible ratings.
quadratic_weighted_kappa(X, min_rating, max_rating), where min_rating
is the minimum possible rating, and max_rating is the maximum possible
rating
"""
rater_a = y
rater_b = y_pred
min_rating=None
max_rating=None
rater_a = np.array(rater_a, dtype=int)
rater_b = np.array(rater_b, dtype=int)
assert(len(rater_a) == len(rater_b))
if min_rating is None:
min_rating = min(min(rater_a), min(rater_b))
if max_rating is None:
max_rating = max(max(rater_a), max(rater_b))
conf_mat = confusion_matrix(rater_a, rater_b,
min_rating, max_rating)
num_ratings = len(conf_mat)
num_scored_items = float(len(rater_a))
hist_rater_a = histogram(rater_a, min_rating, max_rating)
hist_rater_b = histogram(rater_b, min_rating, max_rating)
numerator = 0.0
denominator = 0.0
for i in range(num_ratings):
for j in range(num_ratings):
expected_count = (hist_rater_a[i] * hist_rater_b[j]
/ num_scored_items)
d = pow(i - j, 2.0) / pow(num_ratings - 1, 2.0)
numerator += d * conf_mat[i][j] / num_scored_items
denominator += d * expected_count / num_scored_items
return (1.0 - numerator / denominator)
if __name__ == '__main__':
# Load the training file
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
# we dont need ID columns
idx = test.id.values.astype(int)
train = train.drop('id', axis=1)
test = test.drop('id', axis=1)
# create labels. drop useless columns
y = train.median_relevance.values
train = train.drop(['median_relevance', 'relevance_variance'], axis=1)
# do some lambda magic on text columns
traindata = list(train.apply(lambda x:'%s %s' % (x['query'],x['product_title']),axis=1))
testdata = list(test.apply(lambda x:'%s %s' % (x['query'],x['product_title']),axis=1))
# the infamous tfidf vectorizer (Do you remember this one?)
tfv = TfidfVectorizer(min_df=3, max_features=None,
strip_accents='unicode', analyzer='word',token_pattern=r'\w{1,}',
ngram_range=(1, 5), use_idf=1,smooth_idf=1,sublinear_tf=1,
stop_words = 'english')
# Fit TFIDF
tfv.fit(traindata)
X = tfv.transform(traindata)
X_test = tfv.transform(testdata)
# Initialize SVD
svd = TruncatedSVD()
# Initialize the standard scaler
scl = StandardScaler()
# We will use SVM here..
svm_model = SVC()
# Create the pipeline
clf = pipeline.Pipeline([('svd', svd),
('scl', scl),
('svm', svm_model)])
# Create a parameter grid to search for best parameters for everything in the pipeline
param_grid = {'svd__n_components' : [200, 400],
'svm__C': [10, 12]}
# Kappa Scorer
kappa_scorer = metrics.make_scorer(quadratic_weighted_kappa, greater_is_better = True)
# Initialize Grid Search Model
model = grid_search.GridSearchCV(estimator = clf, param_grid=param_grid, scoring=kappa_scorer,
verbose=10, n_jobs=-1, iid=True, refit=True, cv=2)
# Fit Grid Search Model
model.fit(X, y)
print("Best score: %0.3f" % model.best_score_)
print("Best parameters set:")
best_parameters = model.best_estimator_.get_params()
for param_name in sorted(param_grid.keys()):
print("\t%s: %r" % (param_name, best_parameters[param_name]))
# Get best model
best_model = model.best_estimator_
# Fit model with best parameters optimized for quadratic_weighted_kappa
best_model.fit(X,y)
preds = best_model.predict(X_test)
# Create your first submission file
submission = pd.DataFrame({"id": idx, "prediction": preds})
submission.to_csv("beating_the_benchmark_yet_again.csv", index=False)